AdaBoost Implementation
├── Introduction
│ └── Overview of AdaBoost
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Loading the Dataset
├── Implementing AdaBoost
│ ├── Data Preparation
│ ├── Model Training
│ └── Model Evaluation
├── Visualization
│ └── AdaBoost Classification Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of AdaBoost
- AdaBoost, short for Adaptive Boosting, is an ensemble learning method that combines multiple weak classifiers to create a strong classifier. It adapts by adjusting the weights of misclassified data points.
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import AdaBoostClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification
Loading the Dataset
# Python code to load a sample dataset
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=6)
3. Implementing AdaBoost
Data Preparation
# Python code to split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Model Training
# Python code to train the AdaBoost model
model = AdaBoostClassifier(n_estimators=100)
model.fit(X_train, y_train)
Model Evaluation
# Python code to evaluate the model
y_pred = model.predict(X_test)
4. Visualization
AdaBoost Classification Visualization