Feature Scaling: Techniques and Applications
├── Introduction
│ └── Understanding Feature Scaling
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Generating the Dataset
├── Implementing Feature Scaling
│ ├── Data Preparation
│ ├── Applying Scaling Techniques
│ └── Scaling Data
├── Visualization
│ └── Feature Scaling Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Understanding Feature Scaling
- Feature scaling is a method used to standardize the range of features in a dataset. It's crucial in machine learning models that depend on the magnitude of features.
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import StandardScaler, MinMaxScaler
from sklearn.datasets import make_blobs
Generating the Dataset
# Python code to generate a sample dataset
X, _ = make_blobs(n_samples=300, centers=2, random_state=42, cluster_std=5.0)
3. Implementing Feature Scaling
Data Preparation
- Preparing the dataset for scaling involves ensuring data is clean and suitable for scaling methods.
Applying Scaling Techniques
- Standardization and normalization are two primary techniques used in feature scaling.
Scaling Data
# Standardization
scaler = StandardScaler()
X_standardized = scaler.fit_transform(X)
# Normalization
min_max_scaler = MinMaxScaler()
X_normalized = min_max_scaler.fit_transform(X)
4. Visualization
Feature Scaling Visualization