Feature Selection: Techniques and Implementation
├── Introduction
│   └── Understanding Feature Selection
├── Setting Up the Environment
│   ├── Importing Libraries
│   └── Generating the Dataset
├── Approaches to Feature Selection
│   ├── Filter Methods
│   ├── Wrapper Methods
│   └── Embedded Methods
├── Implementing Feature Selection
│   ├── Data Preparation
│   ├── Applying Feature Selection Techniques
│   └── Evaluating Results
├── Practical Example with Visualization
│   ├── Setup
│   ├── Code Implementation
│   └── Visualization of Feature Importance
└── Conclusion
    └── Insights and Observations

1. Introduction

Understanding Feature Selection

2. Setting Up the Environment

Importing Libraries

import numpy as np
import matplotlib.pyplot as plt
from sklearn.datasets import make_classification
from sklearn.feature_selection import SelectKBest, f_classif

Generating the Dataset

X, y = make_classification(n_samples=300, n_features=20, n_informative=3, random_state=42)

3. Approaches to Feature Selection

Filter Methods

Wrapper Methods

Embedded Methods

4. Implementing Feature Selection

Data Preparation