Hierarchical Clustering Implementation
├── Introduction
│ └── Overview of Hierarchical Clustering
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Generating the Dataset
├── Implementing Hierarchical Clustering
│ ├── Data Preparation
│ ├── Model Training
│ └── Creating Dendrogram
├── Visualization
│ └── Hierarchical Clustering Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of Hierarchical Clustering
- Hierarchical Clustering is an algorithm that builds a hierarchy of clusters. It can be implemented using either a bottom-up (agglomerative) or a top-down (divisive) approach.
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import dendrogram, linkage
from sklearn.datasets import make_blobs
Generating the Dataset
# Python code to generate a sample dataset
X, _ = make_blobs(n_samples=150, centers=4, cluster_std=1.2, random_state=42)
3. Implementing Hierarchical Clustering
Data Preparation
- No target variable is needed as hierarchical clustering is an unsupervised algorithm.
Model Training
# Python code to perform hierarchical clustering
linked = linkage(X, method='ward')
Creating Dendrogram
# Python code to create a dendrogram
dendrogram(linked, orientation='top', distance_sort='descending', show_leaf_counts=True)
plt.title('Hierarchical Clustering Dendrogram')
plt.show()
4. Visualization
Hierarchical Clustering Visualization