Label Encoding: Understanding and Implementation
├── Introduction
│ └── What is Label Encoding?
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Generating the Dataset
├── Applying Label Encoding
│ ├── Data Preparation
│ ├── Encoding Process
│ └── Understanding Encoded Labels
├── Visualization
│ └── Visualizing Label Encoded Data
└── Conclusion
└── Pros and Cons of Label Encoding
1. Introduction
What is Label Encoding?
- Label Encoding is a process of converting categorical text data into model-understandable numerical data. In this technique, each unique category value is assigned a numerical value.
2. Setting Up the Environment
Importing Libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import LabelEncoder
Generating the Dataset
# Creating a DataFrame with categorical data
data = {'Category': ['Apple', 'Banana', 'Orange', 'Apple', 'Banana']}
df = pd.DataFrame(data)
3. Applying Label Encoding
Data Preparation
- Ensure that the data is clean and consists of categorical values.
Encoding Process
# Applying Label Encoding
label_encoder = LabelEncoder()
df['Encoded'] = label_encoder.fit_transform(df['Category'])
Understanding Encoded Labels
- Each unique category is assigned an integer value, starting from 0.
4. Visualization
Visualizing Label Encoded Data