Label Encoding: Understanding and Implementation
├── Introduction
│   └── What is Label Encoding?
├── Setting Up the Environment
│   ├── Importing Libraries
│   └── Generating the Dataset
├── Applying Label Encoding
│   ├── Data Preparation
│   ├── Encoding Process
│   └── Understanding Encoded Labels
├── Visualization
│   └── Visualizing Label Encoded Data
└── Conclusion
    └── Pros and Cons of Label Encoding

1. Introduction

What is Label Encoding?

2. Setting Up the Environment

Importing Libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import LabelEncoder

Generating the Dataset

# Creating a DataFrame with categorical data
data = {'Category': ['Apple', 'Banana', 'Orange', 'Apple', 'Banana']}
df = pd.DataFrame(data)

3. Applying Label Encoding

Data Preparation

Encoding Process

# Applying Label Encoding
label_encoder = LabelEncoder()
df['Encoded'] = label_encoder.fit_transform(df['Category'])

Understanding Encoded Labels

4. Visualization

Visualizing Label Encoded Data