Latent Dirichlet Allocation (LDA) Implementation
├── Introduction
│ └── Overview of LDA
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Preparing the Dataset
├── Implementing LDA
│ ├── Data Preprocessing
│ ├── Model Training
│ └── Identifying Topics
├── Visualization
│ └── Topic Distribution Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of LDA
- Latent Dirichlet Allocation (LDA) is a type of probabilistic model that is used for uncovering the underlying topics in a collection of documents.
2. Setting Up the Environment
Importing Libraries
pythonCopy code
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import LatentDirichletAllocation
from sklearn.feature_extraction.text import CountVectorizer
Preparing the Dataset
# Python code to prepare a sample dataset
# (Assuming 'documents' is a list of text documents)
documents = ["Text of document 1", "Text of document 2", "Text of document 3", ...]
3. Implementing LDA
Data Preprocessing
# Python code for data preprocessing
vectorizer = CountVectorizer(max_df=0.95, min_df=2, stop_words='english')
doc_term_matrix = vectorizer.fit_transform(documents)
Model Training
# Python code to train the LDA model
lda = LatentDirichletAllocation(n_components=10, random_state=0)
lda.fit(doc_term_matrix)
Identifying Topics
# Python code to display identified topics
feature_names = vectorizer.get_feature_names()
for topic_idx, topic in enumerate(lda.components_):
print(f"Topic #{topic_idx+1}:")
print(" ".join([feature_names[i] for i in topic.argsort()[:-11:-1]]))
4. Visualization
Topic Distribution Visualization