Linear Regression Implementation
├── Introduction
│ └── Overview of Linear Regression
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Creating a Sample Dataset
├── Implementing Linear Regression
│ ├── Data Preparation
│ ├── Model Training
│ └── Model Evaluation
├── Visualization
│ └── Regression Line Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of Linear Regression
- Linear Regression is used to model the relationship between a dependent variable and one or more independent variables.
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
Creating a Sample Dataset
# Python code to create a simple dataset
X = np.array([5, 15, 25, 35, 45, 55]).reshape((-1, 1)) # Feature
y = np.array([5, 20, 14, 32, 22, 38]) # Target
3. Implementing Linear Regression
Data Preparation
# Python code for data preparation
X_train = X
y_train = y
Model Training
# Python code to train the Linear Regression model
model = LinearRegression()
model.fit(X_train, y_train)
Model Evaluation
# Python code to evaluate the model
y_pred = model.predict(X_train)
rmse = np.sqrt(mean_squared_error(y_train, y_pred))
4. Visualization
Regression Line Visualization