One-Hot Encoding: Technique and Practical Application
├── Introduction
│   └── What is One-Hot Encoding?
├── Setting Up the Environment
│   ├── Importing Libraries
│   └── Generating Sample Categorical Data
├── Implementing One-Hot Encoding
│   ├── Data Preparation
│   ├── Applying One-Hot Encoding
│   └── Understanding the Encoded Data
├── Visualization
│   └── Visualizing One-Hot Encoded Data
└── Conclusion
    └── Advantages and Use Cases

1. Introduction

What is One-Hot Encoding?

2. Setting Up the Environment

Importing Libraries

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.preprocessing import OneHotEncoder

Generating Sample Categorical Data

# Sample categorical data
data = {'Category': ['Apple', 'Banana', 'Orange', 'Apple', 'Banana']}
df = pd.DataFrame(data)

3. Implementing One-Hot Encoding

Data Preparation

Applying One-Hot Encoding

encoder = OneHotEncoder(sparse=False)
encoded_data = encoder.fit_transform(df[['Category']])

Understanding the Encoded Data

4. Visualization

Visualizing One-Hot Encoded Data