Principal Component Analysis (PCA) Implementation
├── Introduction
│ └── Overview of PCA
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Generating the Dataset
├── Implementing PCA
│ ├── Data Preparation
│ ├── Model Training
│ └── Transforming Data
├── Visualization
│ └── PCA Projection Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of PCA
- PCA is a dimensionality reduction technique that transforms the data into a new coordinate system, where the greatest variances lie on the first coordinates (the principal components).
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.datasets import make_classification
Generating the Dataset
# Python code to generate a sample dataset
X, _ = make_classification(n_samples=300, n_features=3, n_informative=3, n_redundant=0, n_clusters_per_class=1, random_state=42)
3. Implementing PCA
Data Preparation
- The data is prepared and scaled if necessary.
Model Training
# Python code to train the PCA model
pca = PCA(n_components=2)
pca.fit(X)
Transforming Data
# Python code to transform the data using PCA
X_pca = pca.transform(X)
4. Visualization
PCA Projection Visualization