Random Forest Implementation
├── Introduction
│ └── Overview of Random Forest
├── Setting Up the Environment
│ ├── Importing Libraries
│ └── Loading the Dataset
├── Implementing Random Forest
│ ├── Data Preparation
│ ├── Model Training
│ └── Model Evaluation
├── Visualization
│ └── Feature Importance Visualization
└── Conclusion
└── Insights and Observations
1. Introduction
Overview of Random Forest
- Random Forest is an ensemble learning method used for classification and regression. It builds multiple decision trees and merges them together to get a more accurate and stable prediction.
2. Setting Up the Environment
Importing Libraries
# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.datasets import load_iris
Loading the Dataset
# Python code to load a sample dataset
iris = load_iris()
X = iris.data
y = iris.target
3. Implementing Random Forest
Data Preparation
# Python code to split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
Model Training
# Python code to train the Random Forest model
model = RandomForestClassifier(n_estimators=100)
model.fit(X_train, y_train)
Model Evaluation
# Python code to evaluate the model
y_pred = model.predict(X_test)
4. Visualization
Feature Importance Visualization