Voting Ensemble Implementation
├── Introduction
│   └── Overview of Voting Ensemble
├── Setting Up the Environment
│   ├── Importing Libraries
│   └── Loading the Dataset
├── Implementing Voting Ensemble
│   ├── Data Preparation
│   ├── Model Training
│   └── Model Evaluation
├── Visualization
│   └── Voting Ensemble Classification Visualization
└── Conclusion
    └── Insights and Observations

1. Introduction

Overview of Voting Ensemble

2. Setting Up the Environment

Importing Libraries

# Python code to import necessary libraries
import numpy as np
import matplotlib.pyplot as plt
from sklearn.ensemble import VotingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.datasets import make_classification

Loading the Dataset

# Python code to load a sample dataset
X, y = make_classification(n_samples=100, n_features=2, n_redundant=0, n_clusters_per_class=1, random_state=6)

3. Implementing Voting Ensemble

Data Preparation

# Python code to split the data
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Model Training

# Python code to create and train the Voting Ensemble model
log_clf = LogisticRegression()
dt_clf = DecisionTreeClassifier()
svm_clf = SVC()

voting_clf = VotingClassifier(
    estimators=[('lr', log_clf), ('dt', dt_clf), ('svm', svm_clf)],
    voting='hard')
voting_clf.fit(X_train, y_train)

Model Evaluation

# Python code to evaluate the model
y_pred = voting_clf.predict(X_test)

4. Visualization

Voting Ensemble Classification Visualization