Web Crawling: Strategy and Visualization
├── Introduction
│   └── Overview of Web Crawling
├── Setting Up the Environment
│   ├── Importing Libraries
│   └── Target Website Selection
├── Developing a Web Crawler
│   ├── Data Retrieval
│   ├── HTML Content Parsing
│   └── Data Storage
├── Visualization with Word Cloud
│   └── Creating a Word Cloud from Crawled Data
└── Conclusion
    └── Ethical Considerations in Web Crawling

1. Introduction

Overview of Web Crawling

2. Setting Up the Environment

Importing Libraries

import requests
from bs4 import BeautifulSoup
from wordcloud import WordCloud
import matplotlib.pyplot as plt

Target Website Selection

3. Developing a Web Crawler

Data Retrieval

url = '<http://example.com>'
response = requests.get(url)

HTML Content Parsing

soup = BeautifulSoup(response.content, 'html.parser')
text = soup.get_text()

Data Storage