Word2Vec: Understanding and Implementing Word Embeddings
├── Introduction
│   └── Defining Word2Vec
├── Setting Up the Environment
│   ├── Necessary Libraries
│   └── Sample Data Preparation
├── Word2Vec Model
│   ├── Data Preprocessing
│   ├── Model Training
│   └── Analyzing Word Embeddings
├── Practical Examples
│   └── Demonstrating Word Relationships
└── Conclusion
    └── Reflecting on Word2Vec Applications

1. Introduction

Defining Word2Vec

2. Setting Up the Environment

Necessary Libraries

import gensim
from gensim.models import Word2Vec
import nltk
nltk.download('punkt')
from nltk.tokenize import word_tokenize

Sample Data Preparation

3. Word2Vec Model

Data Preprocessing

# Sample sentence
sentence = "Word2Vec transforms words into a rich vector space."
tokens = word_tokenize(sentence.lower())

Model Training

# Training Word2Vec
word2vec_model = Word2Vec([tokens], vector_size=100, window=5, min_count=1, workers=4)

Analyzing Word Embeddings